Tips om tapp

Det finnes to typer metallarbeidere; de som har knukket en gjengetapp, og løgnere.

broken_tap.jpg

Det er et uunngåelig faktum at gjengetapper knekker, spesielt jo mindre de blir. De er skjøre verktøy som må behandles med finesse, spesielt dersom man gjenger for hånd.

Det finnes riktignok andre måter å lage gjenger i hull på enn sponbrytende gjengetapper, som rulletapper eller å frese gjengene, men tradisjonelle tapper er mest utbrett. De er en ganske kost-effektiv og allsidig måte å lage gjenger på.



Gjengetappens anatomi og typer tapper:

Klassiske gjengetapper er gjerne laget av hurtigstål eller annet verktøystål og har vanligvis 3 eller 4 rette fluter. Gjengetapper finnes i mange størrelser fra M1 til M64 eller høyere og alt i mellom.

Gjengetapper er selvsentrerende, dvs. de retter seg selv inn til å være koaksiale med hullet. Dette gjør de ved hjelp av en slipt kon på tuppen av tappen:

slipt_kom.png

Gjengetapper kan kjøpes i et sett, eller hver for seg, med hovedsakelig tre ulike utførelser;

unc_tap_set.jpg

Starttappen har en lengre og slakere kon enn de andre for å sørge for god sentrering og enklere starte inngrepet i materialet på en korrekt måte. Starttappen har ikke gjengenes fullstendige profil, så man kan ikke gjenge et hull ferdig med en starttapp. Når gjengene er startet går man over til en hovedtapp som har mer av gjengenes profil og en mer effektiv kon. Til slutt går man gjennom med bunntappen som har gjengenes fullstendige profil og veldig kort kon for å få så mye gjenger som mulig i et hull som ikke er gjennomgående, ofte kalt en “blindt hull“ (eng. blind hole).

De kan skilles fra hverandre med ringene på skaftet. Starttapper har én ring, hovetapper har to ringer, og bunntapper/sluttapper har ingen ringer.



Mer moderne tapper har gjerne en heliks, på samme måte som flutene på et bor, for å bidra til bedre sponevakuering.

straight_shank_tap.jpg

Disse er som regel ment for CNC-maskiner eller andre hjelpemidler som gjenger i én operasjon som f.eks. en pneumatisk gjengearm:

24676-6314179.jpg

Tradisjonelle tapper lager spon som ruller seg opp i spiraler, som til slutt blir for store for de rette flutene. Det er derfor nødvendig å vri tappen bakover en halv gang for å brekke sponet.

straight_shank_tap_.jpg
spiralspon.png

Det sies at dersom man gjenger for hånd, er den konvensjonelle lærdommen å gjenge én omdreining, for så å vri tilbake en halv gang, men fra min erfaring avhenger det veldig av både materiale og tappstørrelse. Men det er en grei tommelregel.

Men en kuttende egg blir utsatt for mest belastning i det den skal re-engasjere med materialet, og jo skarpere eggen er jo bedre er det å fortsette et lengere kutt enn å bryte sponet mer enn nødvendig. Spesielt i materialer som har harde overflater, eller arbeidsherder, som rustfritt, titan eller inconel. Derfor kan spiraltapper (de kalles spiraltapper, men de er egentlig helikstapper) være å foretrekke.

spiral-flute-metalworking-tap.png

Moderne tapper kommer i ulike utførelser, hovedsakelig basert på materialet og bruken de er ment for. De er som regel fargekodet.

Tappen til høyre i bildet under er kun for gjennomgående, eller åpne, hull (through-hole), siden den presser sponet nedover, ikke oppover.

dormer_taps.png

Fargen er noenlunde standardisert, men kan variere mellom fabrikanter. Under er en veiledende tabell. Konsulter fabrikanten.

color-chart-breakdown3_orig.jpg


Hvorfor tapper knekker:

Det er flere faktorer som kan føre til at en tapp knekker:

  • Dårlig overflate

    • En ujevn overflate i hullet kan gi skjev belastning på tappen som kan gjøre at den knekker.

  • Skjevt hull

    • Dersom boret har vandret og hullet ikke er rett vil dette gjøre at tappen møter mer og mer motstand etter hvert som den går nedover og vil til slutt knekke.

  • Skjev start

    • Samme problem som over, men her har tappen entret hullet skeivt, og det er ikke hullet som er vinklet. Dette er antageligvis den mest vanlige kilden til knekkasje (Er det et ord? Det er det nå.) ved gjenging for hånd.

  • For lite hull

    • Dersom hullet ikke er større enn minstediameteren til tappen vil det selvsagt skape veldig mye friksjon og problematikk for tappen.

  • Arbeidsherdet materiale

    • Hvis man skal gjenge hull som er stanset eller friksjonsdrillet kan hullet ha en hard overfalte, selv etter boring, vil det skape et voldsomt trykk for tappen.

  • Kont hull

    • Dersom hullet er f.eks. plasmaskåret, kan det ikke være bare hardere enn normalt, det er antageligvis litt kont som åpenbart vil øke lasten på tappen jo lenger ned den kommer.

  • Eksentrisk start

    • Mye samme problem som skjev start, men her blir problemet ikke at lasten på tappen økes av at materialet økes, men at tappen bøyer seg etter hullet og vil knekke. Tapper av hurtigstål har ofte evne til å bøye seg nok dersom forskjellen er liten, men tapper av hardere materialer som karbid-tapper vil knekke.

  • Ikke-sirkulært hull

    • Dersom hullet ikke er sirkulært vil det skape ujevn last på tappen som skape en rykkete bevegelse som kan bidra til meget forhøyet moment på tappen.

  • Mangel på olje/fett

    • Det er alltid anbefalt å gjenge med enten gjengepasta eller skjæreolje/kjølevæske. Mangel på dette kan skape unødvendig mye friksjon og varmeutvikling.




Generelle tips:

Gjenger man for hånd kan det å bruke feil svingjern være en kilde til knekkasje. Det er et ord nå. Med feil svingjern så mener man et overdimensjonert svingjern. Svingjern har en rekkevidde for tapper de skal brukes på. Men bare fordi en tapp går inn i svingjernet betyr ikke at det er korrekt for jobben. Jo større svingjern man bruker, jo mer arm får man på tappen, som øker momentet og minsker den taktile tilbakemeldingen man får i hendene. Man må ha en viss “feeling” for tappen gjennom svingjernet. Bruker man for stort svingjern mister man denne, det blir for lett å vri om.

0019405_tap-wrench-four-jaw-for-14-to-12-and-m7-100-to-m12-175-taps-td50_415.jpeg
0658-1-Justerbare-svingjern_l.jpg

Dersom man skal gjenge et hardt materiale, spesielt med små tapper, kan det være smart å bruke et gjengebor en tidels millimeter større enn standarden spesifiserer. Dette gjør selvsagt at gjengetappen ikke møter like mye motstand siden den trenger å skjære vekk mindre materiale med flanken.

Når det kommer til små gjengetapper så liker jeg personlig å “spinne“ tappen litt. Ta veldig veldig lite om gangen, men gi tappen ørlite grann fart, ikke mye, men nok til at den skaver av en liten seksjon til, for så å reversere igjen og gjenta. Dette skulle man tro var litt motsatt av det som ville funket, men å skjære gjenger fungerer best, som alle andre sponbrytende bearbeidingsmetoder, med litt skjærehastighet. Å gjenge små hull med rent moment er ikke å anbefale.

Dersom man skal gjenge i dreiebenk er det lurt å bruke pinolen/bakdokken til å sikre en rett og koaksial entré. Koble fra spindelen og vri den for hånd mens du mater bakdokken i ulåst tilstand. Det holder å starte gjengene slik, resten kan gjøres ved å låse spindelen og gjenge for hånd med et svingjern.

image021.jpg

Dersom man skal gjenge noe i fresen kan man enten bruke en teleskopisk gjengekjoks som flyter et stykke opp og ned og gir deg en tapp som er uavhengig av matehastigheten;

BT40-ETP16-ETP20-ETP25-ETP32-ETP40-Telescopic-rigid-Floating-Tap-M16-collet-chuck-cnc-milling-thread.jpg_q50.jpg

Eller man kan vri spindelen for hånd med en fastlåst tapp og løs spindel, eller bruke et senter og bruke det til å støtte en tapp. Tapper har vanligvis en 60° kon i den bakre enden, som riktignok er et resultat av produksjonsmetoden, men det er også ment som støtte og sentrering for gjenging:

P1140536.jpg

Dersom man må gjenge på frihånd finnes det noen hjelpemidler, hovedsakelig en styreblokk (tap guide);

5993_7276_popup.jpg

Så nå som vi vet hvordan man unngår å knekke tapper (litt mindre i hvert fall), hva gjør man dersom ulykken skulle oppstå? Hvilke bergingsmetoder finnes det?

Tappen har knukket!

Ikke bare har den knukket, det skjer jo selvfølgelig alltid på det siste hullet i en del.

Så hvordan fikser vi det?
Det kommer an på hvor tappen har knukket. Vanligvis knekker de i overgangen til hullet slik at det stikker opp en liten bit. Dersom nok stikker opp til å få et godt grep på den med en tang eller lignende kan dette gjøres, men den metoden jeg vil anbefale først er å forsøke å knakke ut tappen. Ved å ta en dor og slå forsiktig på en av eggene i en sirkulær bevegelse kan man slå den ut:

fig093.jpg

Dersom den er for dypt i hullet til å effektivt komme til med en dor er det en mulighet å bruke en ekstraktor:

thread-broken-threaded-crown-04.jpg

Ett sted som selger dette er f.eks. Walton Tools.

Men sannsynligheten for å ha en slik er liten. Et alternativ er å bruke ståltråd. Den bør være så tykk som mulig, så tykk som flutene tillater.

20201008_133204.jpg

Trykk den så dypt ned som mulig. Dersom man gjenger med en spiraltapp, slå den ned så den former seg til flutene.

20201008_133213.jpg

Ta tak med en tang så nærme tappen du kommer, og press nedover mens du vrir bakover.

20201008_133251.jpg

Mer ekstreme løsninger inkluderer å gløde ut tappen og bore den ut. Eller knuse den på en eller annen måte.

I enda mer ekstreme tilfeller kan det være nødvendig å bruke en elektrode/ gnisterodere ut tappen.


Disse mer ekstreme metodene kan ofte gjøre uopprettelig skade på det originale hullet, og dersom det er tillatelig, kan man gjenopprette det ved å bruke noe som heter Helicoil.

Dette er en teknikk som bruker en spesiell tapp for å sette inn en innsats som vanligvis er rundt én standard gjengestørrelse opp, men med samme stigning. De krever spesielle tapper og verktøy for å installere, men vil returnere hullet til dets opprinnelige gjenger. Også noen ganger brukt med hensikt i produksjon, spesielt i bløte materialer som har skruer som skal skrus inn og ut flere ganger siden det gir et mer slitesterkt grensesnitt mellom bolt og del.

filet-rapporte-helicoil-tangfree-free-running-monte.jpg



Til slutt, la oss raskt se på alternative metoder:

Rulletapp:

forming-taps-500x500.jpg

En tulletapp har ofte ingen fluter, siden den ikke kutter vekk materiale, den bare flytter på det. Rulletapper former gjengene mye på samme måte som en serrat, ved å presse materialet til riktig form.

3_n.png

Rullede gjenger er sterkere enn kuttede gjenger, siden kornstrukturen i materialet opprettholdes, men forflyttes, istedenfor å bryte krystallstrukturen med en sponskjærende tapp, men de er mer applikasjon-spesifikke og kan stort sett ikke brukes for hånd, og starthullet må være større enn ved bruk av konvensjonell tapp.

Men den absolutt beste måten å unngå å knekke en tapp på er å ikke bruke en!

Så dersom du kan, så vurder gjengefresing!

PM0915_WhenThreadMilling_a.gif

Et addendum til gjenger

Jeg har i lengre tid forsøkt å vri hodet mitt rundt gjenger og alle dets iboende finurligheter. Noen anstrengelser har vært til mer nytte enn andre, men heliske profiler rundt sylindere fortsetter å gi meg mareritt. Hvordan kan noe så enkelt være så komplekst?

Jeg har skrevet om gjenger før, et generelt overblikk over hva det er, hvilke standarder som benyttes og hvordan de brukes. Men det har ikke nevneverdig fordypet den grunnleggende og intuitive forståelsen av hva det er som gjør gjenger i stand til å utføre sin oppgave som de gjør.

Med fare for å fornedre leserens intellekt må jeg igjen begynne fra starten:

Gjenger er en fellesbetegnelse på ulike profiler som dreier om en akse i en heliks, altså en lineær stigning, på den utvendige eller innvendige flate av sylindere.

Et innvendig gjenget hull og en utvendig gjenget stang av samme nominell diameter og stigning, er laget slik at de skal passe inn i hverandre ved å rotere slik at profilen på stangen havner inni det rommet som er skapt for den i den tilsvarende like profilen i hullet.

Når jeg sier “lik profil“ så mener jeg egentlig “motsatt profil”, den mottakende profil (hullet) må ha plass til profilen til stangen, standard 60° gjenger bare ser like ut fordi profilen er en likesidet trekant.

heliks_advanced.png

Dersom vi hadde brukt et mer ekstremt eksempel, en gjengeprofil som ikke er “symmetrisk“, ville man lettere sett forskjellen:

Her ser vi tydelig hvordan en asymmetrisk profil ville artet seg i en ekstern gjenge. “Toppene” er dobbelt så tykke some “dalene”, og det er i utgangspunktet ikke noe i veien med denne gjengen.

Disse gjengene er egentlig ikke “asymmetriske“, men gjengehøyden er ikke i nærheten av å være lik stigningen, som ellers er vanlig for de fleste normale gjengeprofiler. Her vil gjengehøyden være 1/3 av stigningen, ganske uortodoks, men det er bare et eksempel.

rar_skrue_utv.png

Men vi ser at den interne motparten til disse gjengene må nødvendigvis være “omvendt” for å ha plass til de brede toppene, så i “mutteren” blir “toppene“ veldig tynne, bare 1/3 av stigningen, i motsetning til de utvendige toppene som blir 2/3 av stigningen. Hvorav denne asymmetrien jeg prøver å poengtere.

Problemet her er at skjærverktøyet til utvendige og innvendige gjenger blir veldig forskjellig. Men nok om det, la oss fokusere tilbake på normale gjenger:

rar_skrue_inv.png
skrue_closeup_skrift.png

Når vi skal lage gjenger, så må vi som sagt påføre en profil rundt en stang eller hull. Denne påføringen kan kun gjøres på én måte, og det er å kutte den.
(Det finnes selvsagt unntak som additive prosesser, men i pragmatismens navn så ignorerer vi det.)

Hvordan de kuttes trenger vi ikke å gå inn på, det har jeg som sagt skrevet om før, her.

Men vi kan ikke legge på profilen slik, så kuttes må de, og det betyr at vi må starte med mer materiale enn vi trenger, det er vanskelig å lage spon av ingenting:

profil_utv.png

Altså må vi gjøre slik:

Stordiameteren blir navnet på gjengen; en M20 gjengestang krever et startmateriale på 20mm.

profil_inv.png

Men det samme gjelder ikke hull:

Dersom vi hadde startet med et 20mm hull og dreiet innvendige gjenger i det ville vi endt opp med noe fullstendig ubrukelig:

profil_inv_inv2.png
gjenger_for_store.png

Stangen ville bare sklidd inn og ut fordi stordiameteren til stangen er nå mindre enn minstediameteren til hullet. Vi har i praksis skapt en klaringspasning med et unyttig mønster på.

Altså må vi gjøre slik:

Vi må som sagt starte med mer materiale enn vi skal ende opp med, og det betyr at hullet må bli mindre enn 20mm.

Men hvor mye mindre?

profil_inv_utv.png

Man skulle kunne tenke seg at vi da må starte med minstediameteren til de utvendige gjengene, den diameteren som blir avstanden mellom toppene i hullet, men dette blir heller ikke riktig:

Hvis vi hadde tatt en M20 gjenge, som har en stigning på 2,5, ville minstediameteren blitt 15mm (ikke egentlig, men la oss bruke runde tall for enkelhets skyld).

Vi kan se på bildet til høyre at det ikke ville gått, etter at gjengene var dreid ville de vært altfor trange og krasje.

Hvorfor skjer dette?

skrue_og_hull_feil.png

Vel, det er et resultat av gjengens heliske natur.

Siden profilen består av både et protruderende segment og et intruderende segment; vil den alternere mellom å “stikke inn” og “stikke ut” hver halve omdreining.

profil.png
skrue_basic_skrift.png

Altså er “tykkelsen“ til skruen, sett fra et aksialt tverrsnitt, alltid være minstediameteren + en gjengehøyde (som teknisk sett mer eller mindre tilsvarer en stigning). Eller stordiameteren - en gjengehøyde, avhengig av hvordan du velger å se på det.

aksial_plam.png

Dette tverrsnittet blir altså da en sirkel som “slanger” seg langsetter rundt aksen av skruen i en heliks-formet bane.

Hadde profilen vært påført i en ikke-helisk form, altså at toppene og bunnene havnet på lik linje på hver side av skruen ville det vært korrekt å lage hullet med minstediameteren, men da… vel… da ville det jo ikke gått an å skru den…

giphy.gif
skrue_og_hull_symmetrisk.png

Så derfor må vi lage hullet i stordiameteren - en stigning, så for en M20x2,5 innvendig gjenge blir gjengeboret 17,5mm.

skrue_og_hull_basic.png
tenor.gif
skrue_og_mutter_basic.png


Du har kanskje lagt merke til at gjengebor noen ganger oppgis litt større enn dette, for eksempel er gjengeboret til M10x1,25 8,8 og ikke 8,75?

Vel, det kommer jo først å fremst av at 8,75 ikke er et lett bor å oppdrive, men også fordi det er bedre å lage hullet litt større enn litt mindre enn regnestykket vårt tilsier. Dette er hovedsakelig fordi denne forskjellen mellom nominell hulldiameter og gjengebor diameter blir til toppklaringen for de innvendige gjengene.

Dersom det brukes fullprofilskjær er ikke dette kritisk, det blir tatt hånd om av skjæret, men ved bruk av HSS stål eller gjengetapp er det en fordel at hullet er større enn den teoretiske verdien.

Det må jo nemlig være litt slark for at de to delen faktisk skal være mulig å skrus sammen. Hvor mye slark som er lov å ha er definert i noe jeg ikke før har nevnt når det kommer til gjenger; toleranseklasser.

Nå har jeg riktignok skrevet om toleranser før, her, men ikke når det kommer til gjenger.

Det er stort sett mye av det samme, men gjengene er jo ikke en glatt sylinder, så det kan variere hvor på bolten eller hullet denne pasningen måles.

skrue_og_mutter_closeup2.png

Når det kommer til gjenger, så er ikke stordiameteren eller lillediameteren egentlig det viktigste, men “profildybden”. Siden gjengene består av skrå flanker som møter hverandre, er det her det blir krasj. Dersom profilen ikke er kuttet til riktig dybde blir jo ikke avstanden mellom to flanker på delediameteren (eller midtdiameteren som det også heter) korrekt.

Så hvor dypt man slår gjengene vil påvirke hvor slarkete de blir. Åpenbart nok, men toleranseklassene definerer tillat slark.

I US Customary (imperial) så bruker de en relativt enkel toleransesetting:

A og B, der A refererer til eksterne gjenger og B refererer til interne gjenger.

  • 1A / 1B er en løs pasning ment for dagligdagse applikasjoner

  • 2A / 2B er en litt trangere klaringspasning ment for mer fin-industrielt bruk

  • 3A / 3B er en trang pasning med ganske fine toleranser.

delediameter.png

Men når det kommer tilbake til vårt eget bedre og mer logiske system, så bruker metrisk det samme systemet som for pasninger ellers, men som sagt, hvor dette måles kan variere. Dette er oppgitt i ISO 965/1.

Som vi kjenner så brukes stor bokstav for hull, altså innvendige gjenger, og liten bokstav for stag, altså utvendige gjenger. Toleransegrad 6 er ment for generelt bruk, og mindre tall betyr en trangere toleranse.

Som jeg nevnte tidligere så er det midtdiameteren som er viktigst, og dette er en imaginær linje som alltid ligger på midten av flanken, d.v.s. midt mellom topp og bunn av den teoretiske profilen (stigningen/2). For å måle denne nøyaktig kreves det vanligvis gjenge-mikrometer, som er et kapittel for seg selv.

Metriske gjengetoleranser kan oppgis på 2 måter, med én eller to toleransegrader.

toleransegrader_gjenger.png

Den første graden refererer til midtdiameteren, den andre til stordiameteren. Dersom toleransene er like, sløyfes den ene og begge representeres med en toleranse. Tallene her er ikke de samme som for vanlige stag og hull, se standarden for tall.

Timing av gjenger

Timing av gjenger kan være nødvendig i mange forskjellige situasjoner der to deler som skrus sammen må stå i en viss vinkel i forhold til hverandre.

brystning3.jpg

Her skal en del som skrus på passe slik at A og B havner på linje, men delen stopper ved punkt C. Hvordan løser vi dette?

Som et eksempel er det viktig for rekylbremser på rifler, som må stå rett slik at gassene blir omdirigert korrekt.

tp_gmd_ar-muzzle-brake-354x200.jpg

Det er selvsagt mange andre scenarioer der timing er nødvendig, men som et eksempel, la oss bruke det ovennevnte tilfellet siden det ligger naturlig for meg å bruke det.

Det finnes flere metoder å sikre at to deler som sammenføyes med gjenger times korrekt:

shims.jpg

Hvis noen av disse må brukes så er shims eller laminatskive det beste alternativet ettersom de fungerer som en forlenging av brystningsflaten og opprettholder parallellitet og konsentrisitet bedre enn crush-skive og kontramutter, som begger er ganske dårlige alternativer.

Men alt handler jo til syvende og sist om brystningsflaten, og det aller beste er at de to delene som skal skrus sammen møtes direkte på denne. Da er det aller beste alternativet for å time delen at brystningsflaten tilpasses. Dette er litt mer innviklet, men ikke vanskelig.

crown.jpg

En ren brystningsflate som er i rett vinkel til gjengenes akse er nødvendig. Denne flyttes bakover ved å fjerne litt materiale slik at delen som skrus på kan skrus lenger inn og dermed havner i en annen vinkel enn før.

thread_path.png

Hvis vi har en stigning på 1 mm og vi fjerner 1 mm av brystningsflaten så vil delen som skrus på havne i samme vinkel, bare 1 mm lenger bak. Så for å endre 1° må vi fjerne 1/360 del av stigningen.

Men hvordan finner vi ut av hvor mye som skal fjernes?

brystning2-2.png

Så for å flytte Tp til Tf må vi fjerne B, og for å finne den er det er par ting vi må vite:

  • Avstanden mellom ønsket stopp-punkt og nåværende stopp-punkt (ΔT)

  • Omkretsen av den delen vi skal flytte brystningsflaten på (C)

  • Stigningen (P)

For å finne ΔT kan vi legge en teip-bit rundt og markere Tf og Tc og måle avstanden. Det finnes andre mer nøyaktige metoder, og man kan også regne seg frem til det hvis man vet vinkelen, men da trenger man ikke denne metoden.

Deretter kan vi regne ut hvor stor del av den totale omkretsen C som ΔT utgjør. Vi kan kalle dette forholdet for Ct:

deltaC.png

Deretter kan vi bruke dette forholdet Ct til å finne ut hvor mye av stigningen P dette utgjør:

deltaP.png

Altså blir hele formelen:

B.png

Det går selvsagt også an å oppnå det samme resultatet ved å endre på brystningspunktet på den delen som skrus på.

Det er lurt å ta av litt mindre enn det man regner ut ettersom noe av timingen kan gjøres vel tilstramming og man har litt å gå på ettersom hvor hardt man strammer.

Krag-Jørgensen kammer-ende (links trapesgjenger!?)

I det siste har jeg blant annet jobbet med å lage en bit av et Krag-Jørgensen løp. Det skal simulere kammer-enden av et Krag-løp for å øve på de diverse finurlighetene som omfatter Kragen og det er god trening i prosesser man ikke gjør så ofte.

Krag løpet er spesielt på mange måter, som gjør det utfordrende å lage det. For det første er gjengene linksgjenget trapesgjenger. Man kan undres om hvorfor. Trapesgjenger er sterke, og det sies at dette var noe Steyr ville ha da de lagde dem. Linksgjengene kan være begrunnet med at dette var en enklere måte å maskinere gjengene på med det utstyret de hadde eller noe i den duren, men det er vanskelig å si med sikkerhet hvorfor noen av disse særegne trekkene ble brukt. Men våpenet ble oppfunnet på en tid da det var hurtig utvikling i feltet og lite var standardisert som det er i dag. Tidlige Kongsberg-produserte Krager hadde firkantgjenger.

For det andre har løpet et frest og filt spor som løfter utdrageren vekk fra patronen slik at patronen ikke skal kunne gi den et støt bakover og oppover som kan gjøre at den lange utdrageren (2 på bildet under) fyker oppover og knekker. At systemet i det hele tatt krever en slik løsning er bare et bevis på et dårlig system spør du meg, men det er nå engang sånn. 

Så, hvordan dreier man trapesgjenger? Dette var det første jeg måtte takle. I bunn og grunn gjøres dette ikke noe annerledes enn vanlige gjenger, men det er et par viktige momenter å ta hensyn til.

Trapesgjenger er i stor grad, mye større grad enn vanlige 60° gjenger, avhengig av et godt og riktig profilskjær. Tykkelsen på skjæret varierer med stigningen og hver stigning trenger et dedikert skjær. Man kan ikke som med 60° gjenger bruke det samme verktøyet på så og si alle stigninger. Det vil si, man kan, men det krever at man gjenger med toppsleiden i en 90° posisjon og øker bredden på kuttet med den; det er ikke "korrekt" måte å gjenge på, men det kan gjøres.

500px-Acme_thread.svg.png

Amerikanske trapesgjenger, også kalt Acme-gjenger, har en total profilvinkel på 29° og altså en flankevinkel på 14,5°. Høyden på gjengene er halvparten av stigningen.

Men Kragens trapesgjenger er ikke 29°, de er 30°. Dette er hovedsakelig den eneste forskjellen på Acme-gjenger og metriske trapesgjenger. 

trapezoidal_threads-n2.png

I atter et fåfengt utbrudd over blanding av standarder og enheter må jeg forbanne de som tenkte det var en god idé å oppgi metriske trapesgjenger med en stigning i tommer. Løpet skal ha 12 gjenger per tomme; 25,4/12 = 2,116, altså er stigningen litt over 2mm...

... men gjengeprofilen bruker metrisk 30° trapesform som skulle tilsi at stigningen ville vært et rundt tall. Men neida.

Uansett, etter å ha høylytt utåndet min oppgitthet måtte jeg finne ut hvordan formskjæret skulle være. Det er vel og bra at jeg vet stigningen, som gir meg tykkelsen på skjæret ved midten av profilen (som er halvparten av stigningen), men hvor tykk skal tuppen være? Den må jo selvsagt være tynnere for å lage selve trapesformen. 

Det finnes en enkel formel, eller rettere sagt, konstant, som kan brukes for å beregne tykkelsen ved rot og tupp av trapesgjenger:

"Litt" refererer her til pasning og klaring for frigang i gjengene og varierer fra kilde til kilde, men for det meste har jeg sett 0,12 mm lagt til C og 0,24 mm lagt til D.

Men denne regelen gjelder for amerikanske Acme-gjenger og vil ikke være helt overførbar til metriske gjenger. Det er bare 1° forskjell, men det kan utgjøre litt endring. Ettersom vi øker flankevinkelen vil topptykkelsen gå mot 0P ettersom det til slutt blir et punkt og ikke en flate. På motsatt side vil dette forholde gradvis gå mot 0,5 P når vi senker flankevinkelen ettersom vi nærmer oss firkantgjenger der topptykkelsen og bunnbredden er lik. Så når vi øker flankevinkelen vil topptykkelsen synke.

Jeg kom med litt tvilsom trigonometri frem til at tuppen på skjæret mitt, uten noen hensyn til rotklaring ville være 0,644mm. Dette gir meg et forhold på 0,3043. Om dette er korrekt er jeg ikke 100% sikker på, men det fungerte greit så jeg må anta at det var noenlunde innenfor.

Med denne informasjonen kunne jeg begynne å tilvirke skjæret mitt. Jeg ville prøve å planslipe skjæret mitt så det ble så nøyaktig og bra som mulig, som en øvelse i presisjon og et forsøk for å se om det er verdt bryet. Det behøves en metode å spenne opp hurtigstålet som skal slipes slik at det kan stilles vinkler i to akser samtidig. Jeg fant en gammel gud-vet-hva som kunne strammes tilstrekkelig og stilles i to vinkler. Den måtte også være magnetisk for å sitte fast på magnetbordet til plansliperen.

Her stilles stålet inn til 15° for å slipe den første siden.

Dessverre har vi ikke tvinge som kan stilles i vinkel, og ihvertfall ikke en som kan stilles i to, så de lesere der ute som måtte grøsse/le over løsningen på bildet over etter min proklamerte higen etter presisjon vil være berettiget, men det var den løsningen jeg fant og det funket fint.

If it's stupid and it works, it ain't stupid.

Trapesgjenger har også vanligvis ganske stor heliksvinkel siden stigningen er så høy i forhold til diameteren, så dette er også en vinkel som må tas hensyn til. Flankene på gjengene er såpass rette og skjæret såpass "høyt" at det er viktig å slipe inn heliksvinkelen, samt klaringsvinkler på begge sider. 

Disse vinklene ble stilt inn og slipt, med den ene forskjell fra normale skjær at heliksvinkelen peker mot høyre og ikke mot venstre siden gjengene er linksgjenger.

30° form ferdig slipt, nå gjenstod kun å slipe spissen til korrekt tykkelse og bygge inn endeklaringen.

Da det var gjort var det på tide å prøve det nye skjæret:

Det ser lovende ut. Utfordringen her og noe som pinte meg litt var at siden gjengene er links så er den enkleste måten å lage dem på å starte innerst og mate utover, og uten et frispor gjør dette at man blir nødt til å øke kuttdybden med en gang man starter maskinen eller presse skjæret inn i stykket før man starter maskinen. Samt at man må være veldig påpasselig og ømfintlig med startspaken når man skal finne igjen begynnelsen av kuttet inne ved roten.

Det finnes bedre måter å gjøre dette på, og dersom man ville laget linksgjenger ved å mate innover må man montere skjæret opp ned og kjøre dreiebenken "bakover".

Gjengene ser korrekte ut, men passer de?

Jada. Litt langt gjengeparti, men det var ment som en øvelse/test. Jeg endte opp med å kutte ned lengden på dette partiet og bruke det videre.

Deretter ble kammeret rømmet og resten av emnet dreid ned til spec.

Det andre litt kinkige trekket ved Krag-løpet er som nevnt rampen til utdrageren. 

Her benyttet jeg litt Blue Dykem (halleluja) merkefarge for opprissing og skrudde på låsekassen for å merke opp hvor sporet måtte være. Dette sporet er ikke helt sentrert.

Igjen så kan jeg ved dette stadiet bare le av min søken etter presisjon med tanke på vinkler. Å rette noe etter stablede parallellklosser er ikke optimalt, men i mangel av noen enkel måte å vinkle etter stikka (f.eks. vinkel passbiter) funket dette helt fint.

Grovformen til sporet ble frest ut, men siden rampen har en konveks form må det files litt til slutt.

Som vi kan se på bildet under skal kurven i rampen (høyre) være slik at kanten sett ovenfra blir rett (venstre).

Etter mye testing og justering fungerte alt som det skulle. De siste to sporene ble frest i sidene og øvelsen var ferdig og ble godkjent.

En meget interessant oppgave som ga meg mulighet til å prøve meg på mer viderekommen gjenging og tilpassing.

Nytt liv til en gammel arbeidshest

Endelig er jeg ferdig et prosjekt som er meg hjertet nært. Et prosjekt jeg har holdt på med siden skoleåret startet i fjor. Min helt egen custom Mauser 98 i .30-06 Springfield! Det ser kanskje ikke sånn ut, men den startet livet som en Karabiner 98k i den tyske hær under andre verdenskrig. En slik som er avbildet under.

Det er ikke min spesifikke rifle jeg holder i bildet over, det er faktisk den som ligger bak. Da jeg overtok den hadde den en gammel, sliten sporter-stokk på seg, men den startet som sagt livet på samme vis som den jeg holder her. Mange av disse riflene som ble liggende igjen etter krigen ble tatt i bruk i Hæren, men kort etter konvertert til .30-06 og gitt til Heimevernet da vi adopterte M1 Garand. På ett eller annet tidspunkt hadde den blitt kamret om til .308 Winchester (som noen få ble da dette ble NATO standard) som jeg ikke fant ut før jeg allerede var på skytebanen og hadde kjøpt .30-06 skudd. Ugh...

Men jeg trengte et våpen til både trening og jakt og tenkte det var en fin anledning til å ha et eget våpen jeg kunne bruke på skytedagene vi skulle ha. Prosjektet startet enkelt nok med den simple endring at jeg ville ha den i .30-06 og en ny stokk. Det ene førte til det andre og plutselig er det eneste originale igjen på børsa låsekassa og sluttstykket. Som er blitt tungt modifisert de og.

Det har vært en lang og lærerik reise med oppturer og nedturer.

 

Kamring og dreiing av nytt løp

Aller først fjernet jeg selvsagt løpet. Det satt godt fast så låsekassa måtte varmes opp for å løsne det.

Den originale løpsprofilen er fler-steget, eller trappet, og personlig er jeg ikke noen tilhenger av designet. For ikke å nevne at det ikke lar seg gjøre å kammre om et .308 løp til .30-06 uten å fjerne en del av kammer-enden siden tykkelsen på .30-06 hylsen er mindre der den treffer .308 skulderen enn .308 er, slik at det ville dannet seg en grop i kammeret her som ville gjort at hylsen ville blitt deformert/sprukket/satt seg fast ved avfyring.

Det er ingen spesiell grunn til at jeg ville ha .30-06 annet enn at jeg liker kaliberet og det en kraftig og allsidig patron. Riflen skal brukes til storviltjakt og langholdsskyting så et relativt grovt kaliber føltes riktig. Det går jo mye på følelser dette; og ikke nødvendigvis på tross av fakta.

Jeg fikk tak i en hylse som er et "adapter" som tilpasses diverse låsekasser og omgjør den til en delvis standardisert festemetode slik at våpenet blir et 'systemvåpen', altså at brukeren kan enkelt skifte løp dersom et annet kaliber kreves eller ønskes brukt i samme våpen.

Kammeret er selvsagt fortsatt i løpet, men det stikker på en måte ut av løpet og tres inn i hylsen. På bildet over er hylsen satt på feil vei for å sjekke pasning. Denne krevde litt å lage; selve pasningen vist over hadde kun 0,03 millimeter unilateral negativ toleranse.

Over kan vi se hylsen skrudd på løpet og gjenger slått i hylsen for å passe i låsekassen (under).

Deretter brotsjes (les: rømmes) kammeret med hele smæla skrudd sammen.

Etter inspeksjon og testskyting av det nye kammeret viste det seg at jeg hadde fått en rivning i metallet under prosessen som hadde etterlatt seg et dypt sår inne i kammeret og som deformerte patronen som vist på bildet under. Dette gjorde den svært vanskelig å få ut, men det gikk heldigvis med bare litt makt. Den dårlige nyheten var jo selvsagt at jeg måtte gjøre alt på nytt, inkludert å lage det presise hylse-partiet om igjen også... 

Men andre gangen gikk det knirkefritt og resultatet ble tilfredsstillende.

Under dreier jeg ned det nye, nå ferdig kammrede, løpsemnet fra Lothar Walter. I første omgang kun ren masseavvirkning for å tynne løpet.

Konusdreiing for å fullføre løpsprofilen. Her brukte jeg brille for å minimere vibrasjoner og optimalisere maskinert overflatefinhet før puss.

Løpet behøver ikke være så veldig tykt, men et tykkere løp bidrar til økt presisjon. Jeg lot løpet være ganske tykt fordi jeg vill ha høy presisjon og løpet skulle uansett flutes for å fjerne noe vekt. Den koniske profilen på løpet bidrar til et slankere og helhetlig visuelt inntrykk med tanke på perspektiv.

 

Fluting

Jeg flutet løpet, hovedsakelig for utseende, men også for å redusere vekt. Dette var stort sett en langsom og kjedelig prosess siden matehastigheten var så lav. Når ett kutt tar ca 15 min og 5 fluter på 3-4 kutt per flute... det tok tid. Men verktøyet var flunkende nytt og prosessen ny for meg så jeg tok det heller litt med ro enn å forhaste meg. Finishen på flutene ble også veldig bra.

På tross av den langsomme prosessen var det en svært interessant og lærerik prosess. I bildet over klokker jeg inn løpet slik at kuttsiden er parallell med X-aksen. Siden løpet er konisk må det spennes opp litt på skrå for at flutens tykkesle skal bli jevn. Det ble spent opp i et delehode og en senterspiss med en vinkelplate som støtte bak. En liten innretning med et spor i satt rundt løpet og ble brukt for å trekke mot vinkelplaten og holde det stramt på plass. 

Det viktigste her er at flutene blir symmetrisk, så den første fluten må stilles inn i forhold til hvordan løpet sitter i låsekassa. Jeg monterte det fast i rifla og merket opp med en av de andre fresene hvor midten/toppen av løpet var. Deretter monterte jeg det opp i oppspenningen over og brukte en høyderissemåler/rissefot får å vise midten av løpet og roterte delehodet til den rissede linjen og høyderissemåleren møttes. Jeg gjorde også noen små testkutt for å verifisere at verktøyet fulgte denne linjen. Nå skulle den første fluten teoretisk sett bli midt oppå løpet.

Jeg lagde som nevnt 5 fluter, av den enkle grunn at det gjorde at jeg slapp å flytte vinkelplaten for hver rotasjon, siden med et oddetall fluter vil løpet alltid hvile mot vinkelplaten på en ribbe og ikke på en flute. Jeg er av den tro at et partall fluter, som er fullstendig symmetrisk, vil gi et stivere løp siden den totale tykkelsen mellom ribbene blir større enn med et oddetall fluter, men det skal tydeligvis ikke utgjøre så stor forskjell.

Et annet viktig moment å tenke på er hvordan løpet er tilvirket. Hvordan det er laget, om det er varmhamret eller kaldhamret eller om riflingene er påført i etterkant med en "button" som dras gjennom pipa kan påvirke hvordan løpet reagerer på å bli flutet. Det kan hende det innfører spenninger ved å lage en hel dyp flute på en gang før man tar den neste, eller det kan gå fint, men man kan trenge å ta alle kutt av samme dybde før man øker kuttdybden for å opprettholde rettheten i pipa, men det var heldigvis ikke et problem for meg med dette løpet.

 

Låsekassen

Mye ble gjort med selve låsekassen og sluttstykket.

Mest interessant av alt er vel en idé jeg fikk av mine mentorer på XXL. Mauser-låsekassen er relativt fleksibel og svak p.g.a utsparingen til tommelen som er der for at våpenet skal kunne bli ladet med stripper-clips. Så tanken er å sveise igjen dette hullet for å stive opp kassa. Hvilket jeg gjorde. 

Jeg lagde en bit av vanlig maskinstål som passet sånn høvelig greit i hullet med litt overmål og MIGet den fast utenpå og inni. Deretter freste jeg vekk det verste og avsluttet med fil. 

Utenom det ble det tilvirket en ny picatinny-skinne som jeg har skrevet om tidligere og nye monstasjehull boret og gjenget.

Nytt avtrekk ble installert, Timney FWD med avtrekkersikring. Siden jeg nå hadde sikring på avtrekkeren ble den originale direkte sikringen på shroud'en fjernet og ny shroud ble kjøpt. Dette er riktignok litt mindre sikkert, men fortsatt sikkert nok.

Utdrageren og bolt-stoppen ble blå-anløpt og jeg monterte en ny selvdesignet hevarm.

Jeg kjøpte også Superior Shooting speedlock-system som er et tennstempel av titan eller stål og aluminium med en ny fjær i krom-silikon legering. Dette kan senke tiden fra avtrekk til skuddet går med flere millisekunder.

 

Rekylbrems

Jeg lagde min egen rekylbrems som er uthulet og plugget igjen for å fange og redirigere så mye av munninggassene som mulig.

Den fanger gassene og omdirigerer dem ut til sidene, oppover og bakover. Også ser den tøff ut.

 

Cerakote

Da alt var ferdig var det på tide å cerakote løp og låskasse, samt andre smådeler. Når det kom til løpet ville jeg ha blanke fluter, så disse ble maskert og endene av løpet plugget.

Cerakote og Durakote er en form for lakk som inneholder keramiske partikler og herder over flere dager og produserer et motstandsdyktig og slitesterkt lag. Det er viktig ved påføring at det som skal sprayes er glass-/sandblåst, avfettet og tørt. Det påføres i èn omgang med mange lette lag, mye som annen pulverlakkering.

Nydelig.

 

Stokk og bedding

I utgangspunktet hadde jeg tenkt til å lage min egen stokk i tre, men siden jeg satte på skinne på låsekassa ville det bli knotete å fylle på ammunisjon i magasinet, så jeg ville ha en løsning med uttakbare boksmagasin. Det var noen greie løsninger der ute og planen var å benytte AICS magasiner med en long-action underbeslag, men det viste seg å være en veldig vanskelig kombinasjon å finne for Mauser. Så jeg endte opp med en AA98, en glassfiber-forsterket polymer-stokk fra Archangel. Denne har mange justeringsmuligheter, er spesialtilpasset M98 og kommer med magasinløsning og et magasin. Jeg kjøpte også to ekstra magasiner, fordi hva er poenget med boksmagasinsystem med bare ett magasin?

Men selv om den kommer ferdig tilpasset var det ikke bra nok for meg. Ikke bare måtte jeg utvide løpskanalen til å passe det nye løpet mitt, jeg ville også bedde stokken. Det vil si å fylle i et epoxyharpiks i stokken for så å presse og skru fast låsekassa med dette stoffet i mellom og la det herde. Dette vil lage et eksakt avtrykk av låsekassa i stokken og den vil ligge godt og solid og vil ikke kunne røre på seg. Det vil også hindre at man drar inn spenninger i låsekassa når man skrur den i stokken som igjen vil bidra til økt presisjon.

Første steg er å rufse opp innsiden der epoxyen skal sitte. Det er kun nødvendig å bedde rundt festepunktene, dvs. rundt skruene, men det må der beddes helt opp til kanten av stokken og spesielt i rekylopptaket, vanligvis den utstikkende flaten ved den fremste skruen.

Det er viktig å lage dype og ru spor her slik at beddingen fester seg godt til stokken. Mange små ikke-parallelle kriker og kroker som limet kan flyte inn i lager et godt feste.

Deretter smøres låsekassen, skruene og alt annet som ikke skal ha lim på seg inn med f.eks. skokrem slik at limet ikke fester seg til annet enn stokken. Så blandes beddemassen som er en blanding av lim og herder, i dette tilfellet i et forhold på 1:4 herder/lim. Vi blandet her 20g lim og 5g herder. Krydre med litt svart fargepulver etter smak. Finhakk en håndfull isolasjon og ha i. Rør godt.

Man ønsker en konsistens slik at det ikke flyter og drypper av rørepinnen. Glassfiberet gir limet styrke og struktur.

Massen legges på og presses godt ned og inn i alle de tidligere nevnte kriker og kroker. En liten rygg av masse legges midt på for å hindre at det fanges luftbobler og som automatisk presses ut fra midten og sørger for en jevn spredning.

Man skrur så fast låsekassen, men ikke så hardt at de spenningene vi prøver å unngå blir bygget inn i beddingen. Så vi strammer til det stopper og så løsner opp til låsekassen ikke stiger mer.

Etter at det er herdet kan de største ansamlingene pirkes av og så kan mekanismen røskes ut av stokken.

Skruehullene kan trenge å bores opp siden det har samlet seg beddemasse i skruekanalene som kan gjøre de vanskelig å få inn skruene ordentlig.

 

Voila!

Annet tilbehør som er brukt:

  • Accu-Tac LR-10 tofot
  • Accu-Shot Mid-Range monopod
  • Vortex Viper PST 6-24x50 EBR-1 MRAD kikkertsikte
  • Daniel Defense QD sling mount
  • Magpul MS4 Dual QD GEN2 reim

Nå er jeg fornøyd og veldig glad! Jeg gleder meg til å ta den med på skytebanen og virkelig sette både den og meg på prøve.